Просмотр отдельного сообщения
Старый 28.11.2014, 13:07   #3324
Gash
Зарегистрированный пользователь
 
Аватар для Gash
 
Регистрация: 21.12.2011
Адрес: Тула
Сообщений: 768
Лайки: 198
4) Черные дыры, как известно, обладают смертоносными приливными силами. Разве они не разорвут как астронавтов, так и планету Миллера, которая в фильме находится слишком близко к горизонту событий?

Цитата:
Даже лаконичная Википедия пишет про одно важное свойство сверхмассивной черной дыры:

«Приливные силы около горизонта событий значительно слабее из-за того, что центральная сингулярность расположена так далеко от горизонта, что гипотетический космонавт, путешествующий к центру чёрной дыры, не почувствует воздействия экстремальных приливных сил до тех пор, пока не погрузится в неё очень глубоко.»



https://ru.wikipedia.org/wiki/%D0%A1...8B%D1%80%D0%B0

С этим согласны любые научные и популярные источники, где описываются свойства сверхмассивных черных дыр.

Расположение точки, в которой приливные силы достигают такой величины, что разрушают попавший туда объект, зависит от размера чёрной дыры. Для сверхмассивных чёрных дыр, как, например, расположенных в центре Галактики, эта точка лежит в пределах их горизонта событий, поэтому гипотетический космонавт может пересечь их горизонт событий, не замечая никаких деформаций, но после пересечения горизонта событий его падение к центру чёрной дыры уже неизбежно. Для малых чёрных дыр, у которых радиус Шварцшильда гораздо ближе к сингулярности, приливные силы убьют космонавта ещё до достижения им горизонта событий



(с) Schwarzschild black holes // General relativity: an introduction for physicists. — Cambridge University Press, 2006. — P. 265. — ISBN 0-521-82951-8.

Разумеется, масса Гаргантюа в была выбрана так, чтобы не разорвать приливами астронавтов.
Стоит заметить, что у Торна Гаргантюа 1990-го года несколько массивнее, чем в Интерстеллар:

«Расчеты показали, что чем больше дыра, тем меньшая тяга требуется ракете для удержания ее на окружности в 1.0001 горизонта событий. Для болезненной, но терпимой тяги в 10 земных g масса дыры должна быть в 15 триллионов солнечных масс. Самая близкая из таких дыр называется Гаргантюа, находится она на расстоянии 100000 световых лет от нашей галактики и в 100 миллионах световых лет от кластера галактик Дева, вокруг которого вращается Млечный Путь. Фактически она находится вблизи квазара 3C273, в 2 миллиардах световых лет от Млечного Пути...
Выйдя на орбиту Гаргантюа и проведя обычные измерения, вы убеждаетесь, что действительно его масса равна 15 триллионам солнечных масс и что вращается он очень медленно. Из этих данных вы вычисляете, что длина окружности его горизонта составляет 29 световых лет. Наконец, рассчитывает, что это дыра, окрестность которой вы можете исследовать, испытывая допустимые приливные силы и ускорение!"



В книге «The Science of Interstellar» 2014-го года, где Кип Торн описывает научные аспекты работы над фильмом, он приводит уже цифру 100 миллионов масс солнца - но замечая, что это минимальная масса, которая может быть у «комфортной» в отношении приливных сил черной дыры.


---------- Сообщение добавлено в 12:07 ---------- Предыдущее сообщение было в 12:03 ----------

Цитата:
5) Как может существовать планета Миллера так близко от черной дыры? Не разорвет ли ее приливными силами?

Астроном Фил Плейнт, известный под кличкой «Плохой Астроном» за свой безудержный скептицизм, просто не смог пройти мимо Интерстеллар. К тому же до этого он злобно разрушал своим сверлящим скепсисом многие нашумевшие фильмы, например «Гравитацию».

Цитата:
«Я действительно с нетерпением ждал Интерстеллар.. Но то, что я увидел, - было ужасно. Это полный провал. Мне все очень, очень не понравилось»
- пишет он в своей статье от 6-го ноября.
Фил говорит, что относительно научной части фильм является полнейшей туфтой. Что даже в гипотетических рамках не может соответствовать современным научным представлениям. Особенно он проехался по планете Миллера. По его словам, планета может устойчиво вращаться вокруг такой черной дыры, но ее орбита должна быть как минимум в три раза больше размера самой Гаргантюа. Часы будут идти медленнее, чем на Земле, но всего на 20 процентов. Устойчивость планеты, близкой к черной дыре, как показано в фильме – это невозможная выдумка. К тому же ее совершенно разорвут на части приливные силы черной дыры.


Но 9-го ноября Плейнт появляется с новой статьей. Он ее называет Follow-Up: Interstellar Mea Culpa. Неримеримый научный критик решил покаяться.
Цитата:
«Снова я напортачил. Но независимо от величины своих ошибок, я всегда стараюсь признавать их. В конце-концов, сама наука заставляет нас признавать свои ошибки и учиться на них!»
Фил Плейнт признал, что допустил ошибки в своих соображениях и пришел к неверным выводам:


Цитата:
«В своем обзоре я говорил о планете Миллера, вращавшейся близко к черной дыре. Час, проведенный на планете равен семи земным годам. Моя претензия состояла в том, что при таком замедлении времени стабильная орбита планеты была бы невозможной.
И это правда... для невращающейся черной дыры. Моя ошибка состояла в том. что я не использовал правильные уравнения для черных дыр, которая быстро вращалась! Это сильно меняет картину пространства-времени возле черной дыры. Сейчас я понимаю, устойчивая орбита у данной планеты вокруг черной дыры вполне может существовать, причем настолько близко к горизонту событий, что указанное в фильме замедление времени возможно. В общем, я был не прав.
Я утверждал также в своем первоначальном анализе, что гравитационные приливы разорвут эту планету на части. Я консультировался с парой астрофизиков, которые также сказали, что приливы Гаргантюа, вероятно, должны уничтожить планету, но математически это пока что не подтверждено. Они до сих пор работают над решением этой задачи – и как только она будет решена, я опубликую решение. Я сам не могу сказать, был ли я прав, или нет в своем анализе, - и даже если я был прав, мои соображения по-прежнему касались только невращающейся черной дыры, так что они не являются справедливыми для этого случая.
Чтобы решить такую задачу, нужно обсудить множество математических проблем. Но я не знаю точно, насколько именно далеко была планета Миллера от Гаргантюа, и поэтому очень трудно сказать, разрушили бы ее приливы, или нет. Книгу физика и исполнительного продюсера фильма Кипа Торна «The Science of Interstellar» я еще не читал – думаю, она прольет свет на эту проблему.
Тем не менее, я ошибался насчет стабильности орбиты – и я сейчас считаю должным отменить эту мою претензию к фильму.
Итак, подведу итог: физическая картина вблизи черной дыры, продемонстрированная в фильме, является на самом деле соответствующей науке. Я сделал ошибку, за которую я приношу свои извинения.


Ikjyot Singh Kohli, физик-теоретик из Йорского университета, на своей странице привел решения уравнений, доказывая, что существование планеты Миллера вполне возможно.
Он нашел решение, при котором планета будет существовать в продемонстрированных в фильме условиях. Но также обсудил и проблему приливных сил, которые должны якобы разорвать планету. Его решение показывает, что приливные силы слишком слабы, чтобы ее разорвать.
Он даже обосновал наличие гигантских волн на поверхности планеты.

Соображения Сингха Коли с примерами уравнений тут:

http://webcache.googleusercontent.co...&ct=clnk&gl=ru

Так показывает нахождение планеты Миллера Торн в своей книге:



Есть точки, в которых орбита будет не устойчива. Но Торн нашел также и устойчивую орбиту:




Приливные силы не разрывают планету, но деформируют ее:




Если планета вращается вокруг источника приливных сил, то они будут постоянно менять свое направление, по-разному деформируя ее в разных точках орбиты. В одном положении планета будет сплющена с востока на запад и вытянута с севера на юг. В другой точке орбиты – сдавлена с севера на юг и растянута с востока на запад. Поскольку гравитация Гаргантюа весьма велика, то меняющиеся внутренние деформации и трение будет нагревать планету, делая ее очень горячей. Но, как мы видели в фильме, планета Миллера выглядит совсем иначе.
Поэтому справедливым будет полагать, что планета всегда повернута к Гаргантюа одной стороной. И это естественно для многих тел, которые вращаются вокруг боле сильного гравитирующего объекта. Например, наша Луна, многие спутники Юпитера и Сатурна всегда повернуты к планете только одной стороной.




Также Торн остановился на еще одном важном моменте:

Цитата:
«Если смотреть на планету Миллера с планеты Манна, то можно увидеть, как она вращается вокруг Гаргантюа с орбитальным периодом 1.7 часа, проходя за это время почти миллиард километров. Это примерно половина скорости света! Из-за замедления времени для экипажа Рейнджера этот период уменьшается, составляя десятую долю секунды. Это очень быстро! И разве это не намного быстрее, чем скорость света? Нет, ведь в системе отчета вихреобразно движущегося пространства вокруг Гаргантюа планета движется медленее, чем свет.
В моей научной модели фильме планета повернута к черной дыре всегда одной стороной, и вращается с бешеной скоростью. Не разорвут ли центробежные силы планету на части из-за этой скорости? Нет: ее снова спасает вращающийся вихрь пространства. Планета не будет ощущать разрушительных центробежных сил, так как само пространство вращается вместе с ней с той же самой скоростью»

6) Как возможны настолько гигантские волны на поверхности планеты Миллера?
На этот вопрос Торн отвечает так:

Цитата:
«Я сделал необходимые физические расчеты, и нашел две возможных научных интерпретации.
Оба этих решения требуют, чтобы положение оси вращения планеты было не стабильным. Планета должна раскачиваться в некотором диапазоне, как показано на рисунке. Это происходит под воздействие гравитации Гаргантюа.



Когда я вычислил период этого раскачивания, то я получил величину около часа. И это совпало с тем временем, который выбрал Крис - до этого еще не знавший о моей научной интерпретации!
Моя вторая модель - это цунами. Приливные силы Гаргантюа может деформировать кору планеты Миллера, с таким же периодом (1 час). Эти деформации могут создавать очень сильные землетрясения. Они могут вызывать такие цунами, которые будут значительно превосходить любые, увиденные когда-либо на Земле.»

7) Как возможны такие невероятные маневры Эндуренс и Рейнджера на орбите Гаргантюа?
1) Эндуренс движется по парковочной орбите с радиусом , равным 10 радиусом Гаргантюа, и экипаж направляющийся на п. Миллера, движется со скоростью С/3. Планета Миллера движется со скоростью 55% от С.
2) Рейнджер должен сбросить скорость от С/3 на меньшую, чтобы снизить орбиту и приблизиться к п. Миллера. Он замедляется до с/4, и достигает окрестностей планеты (разумеется, тут надо соблюсти строгий расчет, чтобы попасть. Но это не проблема для компьютера)



Механизм для столь существенного изменения скорости описан Торном:
“Звезды и малые черные дыры вращаются вокруг гигантских черных дыр, как Гаргантюа. Именно они могут создавать определяющие силы, которые отклонят Рейнджер от его круговой орбиты и направят его вниз – к Гаргантюа. Подобный гравитационный маневр часто используется НАСА в Солнечной системе, хотя тут используется гравитация планет, а не черной дыры. Подробности этого маневра не раскрываются в Интерстеллар, но сам маневр упоминается, когда они говорят о использовании нейтронной звезды, чтобы замедлить скорость.“
Нейтронная звезда показана Торном на рисунке:

Свидание с нейтронной звездой позволяет изменить скорость:

“Такое приближение может очень опасным, т.е. Рейнджер должен приблизиться к нейтронной звезде (или малой черной дыре) достаточно близко, чтобы ощущать сильную гравитацию. Если тормозящая звезда или черна дыра с меньшим радиусом, чем 10 000 км, то людей и Рейнджер разорвут приливные силы. Поэтому нейтронная звезда должна быть по меньшем мере размером 10 000 км.
Я обсуждал эту проблему с Ноланом во время производства сценария, предложив черную дыру или нейтронную звезду на выбор. Нолан выбрал нейтронную звезду. Почему? Потому что он не хотел запутать зрителей двумя черными дырами.”
“Черные дыры, называемые IMBH (Intermediate-Mass Black Holes) – в десять тысяч раз меньше, чем Гаргантюа, но в тысячу раз тяжелее, чем обычные черные дыры. Такой отклонитель Куперу необходим. Некоторые IMBH, как полагают, образуются в шаровых скоплениях, а некоторые находятся в ядрах галактик, где находятся и гигантские черные дыры. Ближайшим примером является Туманность Андромеды, – самая близкая к нам галактика. В ядре Андромеды скрывается дыра, подобная Гаргантюа – примерно 100 млн. солнечных масс. Когда IMBH проходит через какой-либо регион с плотной звездной населенностью, то эффект “динамического трения” замедляет скорость IMBH , и она падает все ниже и ниже, все ближе оказываясь к гигантской черной дыре. В результате IMBH оказывается в непосредственной близости от сверхмассивной черной дыры. Таким образом, природа могла вполне обеспечить Купера таким источником гравитационного отклонения."

Последний раз редактировалось Gash; 28.11.2014 в 14:09.
Gash вне форума   Ответить с цитированием
Gash получил(а) за это сообщение 6 лайков от: